CHAOS THEORY - CRITICAL POINTS
+Critical points
a>0 no critical pts
| | a=0 degenerate critical pts
._--_. | | | a<0 2 nondegen critical pts
/ \ | / / / (saddle function)
/ \|/ / /
---------/----------+---------/------------
/ / /|\ /
/ / / | \ /
/ | | | -___-
/ / | | ^
/ | |
Critical point - equilibrium pt = attractor
family f(x) = x^3/3 + ax
x^3/3 = degenerate critical point
ax = stabilizer (polynomial)
+Local/Global Behavior
Local Infor @ critical point -> global behavior
|
@@@@@@ | Information of behavior near
/ \ | / critical points (@@@@@) Gives /
/ \| / global behavior of function ( / )
---------/----------+---------/------------ /
/ |\ /
/ | \ /
/ | @@@@@
|
|
Critical point -> dominant terms of taylor expansion @ x0
Critical point (singularity) attractor/repellor / lorenz shifter
+Whitney's theorem (hassler whitney 1955)
any smooth transformation (w/ no creases taking points
of a plane into another plane , only types of points are regular pt, folds, cusps
++Morse Theorem (marston Morse 1935)
A morse function ( = function w/ no degenerate critical points)
near a critical point of index k (=# dimensions that bend up)
there is a smooth change of coordinates s.t. the tayl of the
taylor series expansion of f vanishes (diffeomorphism
= smooth equivalence)
f(x)=a0(xo) + [a1(xo)](x-x0) + [a2(xo)](x-x0)^2 + ...
f'(x) ( ) f''(x) ( ) + tayl
Tayl = higher order terms of first non zero a factor
1. Small perturbation of a morse function = another morse function
2. degenerate ritical pt xform into nondegenerate critical pt w/ small "jiggle " of original function
+Splitting Lemma non-morse function f=p(y)+Q(y) ; p(y) = non morse order 3+, q(y)=morse quadratic
+Thom Classification Theorem
corank
/codim fn fold name spatial temporal
1/1 y^3 fold boundary begin/end
1/2 y^4 cusp pleat,fault separate/unite,change
1/3 y^5 swallowtail split,furrow split;tear
1/4 y^6 butterfly pocket give/rcv;fill/empty
2/3 y1^3-3y1y2^2 elliptic umbilic wave crest,arch collapse engulf
2/3 y1^3+y2^3 hyperbolic umbilic spike,hair drill
2/4 y1^2y2+y2^4 parabolic umbilic mouth open/close,eject
+corank = degree of independence = # of vanishings in 2nd order in taylor's expansion
+codimension (morse function ness)minimal # of independent terms to add to make non-morse function into morse
+Catastrophe theory( 1970 thom)
becoming degenerate critical point =
bifurcation = catastrophe pt = lorenz shift pt (equilib shift)=
discoherent / discontinuous jump (stock boom/bust,morpheogenesis,origami fold)
1) Morpheogenesis
2) 11/1940 Tacoma Narrow Bridge
Home
Next ... Computation